Calcified and mechanically debilitated three-dimensional hydrogel environment induces hypertrophic trend in chondrocytes

Author:

Çelik Ekin1,Bayram Cem2,Akçapınar Rümeysa3,Türk Mustafa4,Denkbaş Emir Baki15

Affiliation:

1. Bioengineering Department, Hacettepe University, Ankara, Turkey

2. Advanced Technologies Research and Application Center, Hacettepe University, Ankara, Turkey

3. Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey

4. Department of Bioengineering, Faculty of Engineering, Kirikkale University, Kirikkale, Turkey

5. Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey

Abstract

Currently, the main focus on tissue engineering strategies is to mimic the extracellular matrix of the related tissues. Many studies accomplished to build tissue scaffolds to act as the natural surroundings of the specific interest, which can be established to behave like either healthy or unhealthy tissues. The latter one of these conditions is a quite new approach and crucial for the design of three-dimensional in vitro disease models. This study investigates the potential of a composite scaffold consisting hydroxyapatite-integrated fluorenyl-9-methoxycarbonyl diphenylalanine hydrogels by focusing on the optimization of this hybrid scaffold for the development of an in vitro model of degenerative cartilage. Cell growth, chondrocyte proliferation, extracellular matrix production, hypertrophy marker monitoring, scaffold mechanical properties, and morphological analysis were evaluated. Fluorenyl-9-methoxycarbonyl diphenylalanine dipeptides were dissolved in null cell culture media and pH decreased sequentially to compel peptides to self-organize into fibrous hydrogel scaffolds. Nano-hydroxyapatite crystals were incorporated into fluorenyl-9-methoxycarbonyl diphenylalanine hydrogels during the gelation to investigate the effect on chondrocytes. It is observed that hydroxyapatite incorporation into peptide hydrogels significantly increased the alkaline phosphatase activity and assymetrical cell divisions, which is appraised as an outcome of chondrocyte hypertrophy. It is concluded that chondrocytes develop a hypertrophic potential when they are cultured in a media with nano-hydroxyapatites in a three-dimensional cell culture matrix mimicking the extracellular matrix conditions of degenerative cartilage.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3