Cellulose acetate scaffold containing hydroxyapatite/graphene oxide nanocomposite by electrospinning for advanced regenerative therapies

Author:

Menezes Luan dos Santos1ORCID,Navarro da Rocha Daniel2,Carajelescov Nonato Renato3,Costa Ana Rosa1,Morales Ana Rita3,Correr-Sobrinho Lourenço1,Correr Américo Bortolazzo1,Neves José Guilherme1ORCID

Affiliation:

1. Department of Restorative Dentistry, Dental Materials Area, Piracicaba Dental School, State University of Campinas, UNICAMP, São Paulo, Brazil

2. Department of Bioengineering, R-Crio Criogenia S.A., Campinas, São Paulo, Brazil

3. Department of Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil

Abstract

The aim of this study was to synthesize and characterize Cellulose Acetate (CA) porous scaffolds using the electrospinning technique associated with Hydroxyapatite (HA) and different concentrations of graphene oxide (GO), for advanced regenerative therapies application. The scaffolds were categorized into four distinct groups based on their composition: (1) Pure CA scaffolds; (2) CAHA scaffolds; (3) CAHAGO 1.0% scaffolds; (4) CAHAGO 1.5% scaffolds. Transmission Electron Microscopy (TEM) was used for the characterization of the nanocomposite. The scaffolds were analyzed by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), and in vitro cell viability assays (WST). For the biological test analysis of Variance (two-way) was used, followed by Tukey’s post-test (α = 0.05). The TEM analysis allowed for the visualization of the deposition of HA on the graphene sheets, confirming the synthesis of the nanocomposite. XRD revealed the predominant presence of CaP phases in the CAHA, CAHAGO 1.0%, and CAHAGO 1.5% groups, underscoring the inherent mineral composition of the scaffolds. FTIR demonstrated cellulose characteristics and PO4 bands in the groups containing HA, confirming the effective incorporation of this material. Raman spectroscopy revealed distinct peaks in the GO groups, conclusively verifying the successful integration of graphene into the scaffold matrix. The micrographs showcased irregular pores filling the entire surface, arising from the intricate overlapping of fibers during scaffold formation. Importantly, all scaffolds exhibited excellent cell viability in the conducted assays. A proliferation process was observed in CAHA and CAHAGO 1.5% groups after 48 h ( p < 0.05). In conclusion, the scaffolds synthesized hold significant promise in the realm of tissue engineering and provide a fresh perspective on the possibilities for regenerative therapies.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3