Lethal in vitro effects of optimized chitosan nanoparticles against protoscoleces of Echinococcus granulosus

Author:

Firouzeh Nima12,Eslaminejad Touba3,Shafiei Reza2,Faridi Ashkan45,Fasihi Harandi Majid5ORCID

Affiliation:

1. Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

2. Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran

3. Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

4. Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

5. Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Cystic Echinococcosis (CE) is a parasitic infection caused by the larval stage of Echinococcus granulosus. Exploring safe and effective scolicidal agents for the surgery is an urgent need for the successful treatment of CE. This study aimed to determine scolicidal activity of the synthesized chitosan nanoparticles. Physicochemical properties of synthesized nanoparticles were determined by using DLS, FTIR, and SEM. Different concentrations of chitosan nanoparticles from 125 to 1000 μg/ml were examined at different incubation times (10, 60, 120, and 180 min). Scolicidal and cytotoxic activity of chitosan nanoparticles were confirmed by eosin exclusion and hemolysis activity tests. FTIR spectra, zeta potential (+42 ± 2.08) and PDI (0.388 ± 0.034) value revealed that the chitosan nanoparticles were synthesized. Significant differences among the scolicidal effects of chitosan nanoparticles were observed in comparison to the control treatments and highest scolicidal activity was observed at 1000 μg/ml after 180 min exposure time. Hemolytic activity was not significant at all concentrations of chitosan nanoparticles. Our findings support the hypothesis that Chitosan nanoparticles have the potential to be a safe and efficient scolicidal agent candidate at very low concentrations and in a wide range of exposure time. Further in vivo studies are recommended to evaluate chitosan nanoparticle efficacy before clinical application.

Funder

Kerman University of Medical Sciences

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3