Biodegradable uniform microspheres based on solid-in-oil-in-water emulsion for drug delivery: A comparison of homogenization and fluidic device

Author:

Ryu Tae-Kyung1,Kim Sung Eun2,Kim Joo-Hwan1,Moon Seung-Kwan1,Choi Sung-Wook1

Affiliation:

1. Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea

2. Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Medical College, Seoul, Republic of Korea

Abstract

Based on solid-in-oil-in-water emulsification, we fabricated biodegradable poly(ϵ-caprolactone) microspheres containing gentamicin using conventional homogenization and a fluidic device. The feasibility of the poly(ϵ-caprolactone) microspheres as drug carriers was evaluated in terms of encapsulation efficiency, release behavior of gentamicin, and antimicrobial activity. The poly(ϵ-caprolactone) microspheres prepared using a fluidic device (fluidic device microspheres) had a uniform diameter and a smooth surface, whereas the poly(ϵ-caprolactone) microspheres prepared using conventional homogenization (conventional homogenization microspheres) exhibited polydisperse and a porous structure. At 0.3 wt% of gentamicin concentration, the encapsulation efficiencies of the conventional homogenization and fluidic device microspheres were 39.5% and 72.0%, respectively. In addition, a significant amount of gentamicin was only released initially from the conventional homogenization microspheres, whereas the fluidic device microspheres released gentamicin in a sustained manner for 28 days. These results confirmed the superior performances of the uniform fluidic device microspheres for drug delivery system. We further proposed a model for microsphere formation to explain the difference in performance of the conventional homogenization and fluidic device microspheres.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3