Preparation and antibacterial ability of photodynamic antibacterial nanoparticles with ammonium cationic groups

Author:

Jiang Zunyu12,Yang Rong12,Sheng Yang12,Sun Yixin12,Li Jian12,Bradley Mark23,Zhang Rong12ORCID

Affiliation:

1. School of Materials Science and Engineering, Changzhou University, Changzhou, China

2. Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou, China

3. Precision Healthcare University Research Institute, Queen Mary University of London, London, UK

Abstract

With the increasing infection of drug-resistant bacteria, it has become a great challenge for researchers to find new approaches to eradicate drug-resistant bacteria and their biofilms. Photodynamic antimicrobial chemotherapy (PACT) is an indispensable part of the new anti-bacterial strategy because of its unique anti-bacterial mechanism, which can effectively inactivate drug-resistant bacteria without inducing further drug resistance. In this work, nanoparticles with N-isopropylacrylamide and methacryloxyethyltrimethyl ammonium chloride as monomers, and loaded with a fluorescent conjugated polymer were successfully prepared by microemulsion polymerization. The average particle size ranged from 100 to 200 nm. The nanoparticles could disperse in water steadily according to their zeta potential analysis. The nanoparticles generated singlet oxygen upon exposing to light with wavelength of 500–700 nm. Their PACT efficiency was investigated against Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus respectively. The results indicated that the antibacterial ability of nanparticles were excellent as the concentration was more than 0.01 mg/mL and the illumination time was 30 min. When the mass concentration of the nanoparticles was equal to or more than 0.05 mg/mL, the antibacterial mechanism was dominated by cation action, and when the concentration was equal or lower than 0.01 mg/mL, the antibacterial ability of the nanoparticles was improved effectively by photodynamic action. The antibacterial rate of the nanoparticle solutions against the bacteria in the biofilm was quantitatively studied, and it was proved that the nanoparticles eliminated bacteria in the biofilm effectively with a nanoparticle concentration of 0.2 mg/mL or more. The results indicated that the nanoparticles could effectively penetrate the biofilm to kill bacteria inside the biofilm by light illumination.

Funder

priority academic program development of jiangsu higher education institutions

six talent peaks project in jiangsu province

changzhou municipal science and technology bureau

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3