Improved poly(d,l-lactide-co-1,3-trimethylene carbonate)6 copolymer microparticle vehicles for sustained and controlled delivery of bioactive basic fibroblast growth factor

Author:

Gao Mingyong1,Zeng Chenguang2,Zhu Aiping2,Tao Haiyin1,Yang Liu1,Quan Daping2

Affiliation:

1. Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China

2. DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China

Abstract

A novel, biocompatible and biodegradable six-arm branched copolymer poly(d,l-lactide)-co-(1,3-trimethylene carbonate)6 has been synthesized and fabricated as a porous microparticle with an oil-in-water single emulsion method. Poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles were further conjugated with heparin by 1-ethyl-3-3-dimethylamino-propylcarbodiimide/ N-hydroxysuccinimide chemistry and characterized using 1H-nuclear magnetic resonance and scanning electron microscopy. The heparin-loading capacity of poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles was identified as 213 ± 6 pmol/mg-particle determined with toluidine blue method. The resultant binding efficiency and release profile of basic fibroblast growth factor which is bound on heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles were quantitatively analyzed by enzyme-linked immunosorbent assay. Thus, the developed poly(d,l-lactide-co-1,3-trimethylene carbonate)6 porous microparticles presented superior capacity of growth factor cargo as 1965 ± 117 pg basic fibroblast growth factor per mg-microparticles and displayed a sustained release profile over 4 weeks with quite low initial burst. Additionally, the viability of dissociated basic fibroblast growth factor was confirmed with methylthiazolyltetrazolium quantitative assay along with in vitro culturing model of rodent neural stem cell. Collectively, our results demonstrate that heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles attained controllable and sustained delivery of bioactive basic fibroblast growth factor for 4 weeks with significantly reduced burst release. The present heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 porous microparticulate system could be potentially developed to foster a novel bioengineering platform for repair and regeneration of injured nervous system.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3