Combined effects of drugs and plasticizers on the properties of drug delivery films

Author:

Jennings Cheryl L1,Dziubla Thomas D2,Puleo David A1

Affiliation:

1. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA

2. Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA

Abstract

Formation of scar tissue may be reduced or prevented if wounds are locally treated with a combination of molecules tuned to the different healing phases, guiding tissue regeneration along a scar free path. To this end, drug delivery devices made of cellulose acetate phthalate and Pluronic F-127 were loaded with either quercetin or pirfenidone and plasticized with either triethyl citrate or tributyl citrate. Quercetin inhibits oxidative stress, and pirfenidone has been shown to reduce production of pro-inflammatory and fibrogenic molecules. The combined effects of drug and plasticizer on erosion, release, and mechanical properties of the drug delivery films were investigated. Triethyl citrate-plasticized films containing quercetin released drug at a slower rate than did tributyl citrate films. Pirfenidone-loaded films released drug at a faster rate than erosion occurred for both types of plasticizers. Higher plasticizer contents of both triethyl citrate and tributyl citrate increased the elongation and decreased the elastic modulus. In contrast, increased pirfenidone loading in both triethyl citrate and tributyl citrate films resulted in a significantly higher modulus, an antiplasticizer effect. Adding pirfenidone significantly decreased elongation for all film types, but quercetin-loaded samples had significantly greater elongation with increasing drug content. Films containing quercetin elongated more than did pirfenidone-loaded films. Quercetin is over 1.5 times larger than pirfenidone, has water solubility over 12 times lower, and has 6 times more bonding sites than pirfenidone. These differences affected how the two drugs interacted with cellulose acetate phthalate and Pluronic F-127 and thereby determined polymer properties. Drug release, erosion, and mechanical properties of association polymer films can be tailored by the characteristics of the drugs and plasticizers included in the system.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3