Evaluation of triacetin on mechanical strength and free surface energy of PHBHHx: The prevention of intra-abdominal adhesion

Author:

Akkurt Yıldırım Meryem1ORCID,Demirbilek Murat2,Kızılbey Kadriye3,Kaplan Engin4,Türkoğlu Nelisa1ORCID

Affiliation:

1. Department of Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey

2. Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey

3. Biomedical Engineering Department, İstanbul Yeni Yüzyıl University, İstanbul, Turkey

4. Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University-Cerrahpasa, İstanbul, Turkey

Abstract

Several polymers are used for the preparation of biomaterials as membranes and films for tissue engineering applications. The most common plasticizer is PEG to obtain polymer-based biomaterials. On the other hand, triacetin is a non-toxic, FDA-approved plasticizer mostly used in the food industry. In this study, we used triacetin as a plasticizer to obtain hydrophobic membranes for the prevention of intra-abdominal adhesion. We selected a well-known polymer named PHBHHx which is a bacterial polyester generally used as supporting material for cell attachments in regenerative tissue applications. We evaluated the triacetin as a plasticizer and its effect on mechanical, thermal, surface area, pore size, and surface energy. The hydrophobic/hydrophilic contrast of a biomaterial surface determines the biological response. Surface hydrophobicity is critical for the cellular response. The contact angle tests of PHBHHx revealed that the hydrophilicity of the membrane was decreased following triacetin blending. Modification of the PHBHHx membrane by blending with triacetin caused a significant decrease in cell adhesion. The cell attachment rates of PHBHHx membranes were as 95 ± 5% on the first day, 34.5 ± 0.9% on third day, and 23 ± 1.5% on the fifth day, respectively. The rates of cell attachments on PHBHHx/triacetin membranes were determined as 79 ± 2.5% for the first day, 33 ± 2.7% for the third day, and 13 ± 2.1% for the fifth day, respectively. Besides, triacetin blending decreased the surface area from 38.790 to 32.379 m2/g. The elongation at breaks was observed as 128% for PHBHHx and 171% for PHBHHx/triacetin. Graphical abstract [Formula: see text]

Funder

Yıldız Technical University scientific research project

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3