Nanofibrous electrospun barrier membrane promotes osteogenic differentiation of human mesenchymal stem cells

Author:

Wang Ping12,Gong Ping12,Lin Yi3,Qu Yili1,Li Jidong4,Kong Xiangli1,Chen Zhiqing1,Man Yi12

Affiliation:

1. State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China

2. Implant Center, West China College of Stomatology, Sichuan University, Chengdu, China

3. Textile College, Sichuan University, Chengdu, China

4. Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China

Abstract

An electrospun polysulfone (PSU) was prepared as a barrier membrane for guided bone regeneration. The membrane was in nanoscale to prevent fibrous tissue infiltration and highly porous to allow permeation of oxygen and nutrients. The morphology and attachment, viability and proliferation, and differentiation and mineralization of human bone marrow mesenchymal stem cells (HBMSCs) were determined. Cells adhered and spread well on the PSU membrane with characteristic polygonal, fusiform shapes and radial extensions. The live/dead staining revealed that the membrane had no negative influence on cell viability. The proliferation rates of HBMSCs on PSU membranes were lower in comparison with tissue-culture polystyrene plate after 3 days of culture. However, differentiation activity was particularly expressed at high levels when cells were cultured on PSU membranes. The results based on the data suggest that the PSU electrospun membrane promoted the osteogenic differentiation of HBMSCs, displayed desirable in vitro biocompatibility, and has good potential as a barrier membrane.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3