Heat-curing polylactide for bone implants: Preparation and investigation on properties relevant to degradation

Author:

Tanodekaew Siriporn1ORCID,Channasanon Somruethai1,Kaewkong Pakkanun1

Affiliation:

1. National Metal and Materials Technology Center, Pathum Thani, Thailand

Abstract

Several processes have been used to produce polylactide for bone replacement. The challenge remains, however, to produce these devices by a simpler and more economical process. In this study, a method of combining powder and liquid parts was introduced. Star-shaped polylactides with molecular weights ranging from 3 to 16 kg/mol were synthesized and blended with a linear polylactide (Mw = 188 kg/mol) using the technique of emulsion solvent evaporation. The blends in a form of spherical powder were characterized by scanning electron microscopy, gel permeation chromatography, and particle size analysis. The heat-curing polylactide was fabricated by mixing the powder with triethylene glycol dimethacrylate, molded, and then heated in a hot water bath to solidify. The effects of powder composition in terms of amount and molecular weight of the star-shaped polylactide on mechanical properties were investigated. The results showed an increase in flexural strength with increase in the amount of star-shaped polylactide. The powder comprised star-shaped polylactide having the molecular weight of 10,770 g/mol, not less than 80wt%, offered the fabricated heat-curing polylactide with high strength ranging from 95 to 100 MPa. This formulation was further incorporated with hydroxyapatite to improve biocompatibility and subjected to degradation at 37°C. Mechanical test and weight loss determination together with biological test were conducted at certain times during degradation of the materials. Both materials with and without hydroxyapatite showed mechanical stability upon degradation for at least 6 months, but the one with hydroxyapatite revealed significantly better bioactivity at the end of 1-year follow-up study, making it the most promising material for bone implants.

Funder

National Metal and Materials Technology Center

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3