An efficient functionalization of dexamethasone-loaded polymeric scaffold with [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane coupling agent for bone regeneration: Synthesis, characterization, and in vitro evaluation

Author:

Ghorbani Farnaz1,Zamanian Ali2ORCID

Affiliation:

1. Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China

2. Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Islamic Republic of Iran

Abstract

In this study, dexamethasone-loaded gelatin–starch scaffolds were fabricated by the freeze-drying technique under different cooling temperatures and polymeric compositions. The constructs were modified via [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane coupling agent in order to produce a bioactive network structure for bone tissue engineering applications. Herein, the synergistic effect of [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane and dexamethasone was examined on the bioactivity and osteogenic behavior of scaffolds. Based on scanning electron microscopy micrographs, more fine pores were formed at higher freezing temperatures. The prepared microstructure at a rapid freezing rate resulted in diminished mechanical properties and a greater level of swelling and durability compared with a slow freezing rate. According to the acquired results, the mechanical strength decreased, while both absorption capacity and mass loss rate increased as a function of starch addition. Furthermore, the enhancement of hydrophilicity and reduction of mechanical stability enhanced the dexamethasone release levels. In addition, the synthesized constructs confirmed the positive effect of [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane and dexamethasone on biomimetic mineralization of the scaffolds. Supporting the cellular adhesion and proliferation alongside the expression of alkaline phosphatase, especially in the presence of dexamethasone, was the other advantage of synthetic scaffolds as a bone reconstructive substitute. Accordingly, drug-loaded hybrid constructs seem to be promising for further preclinical and clinical investigations in bone tissue engineering.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3