Improvement of osteogenic properties using a 3D-printed graphene oxide/hyaluronic acid/chitosan composite scaffold

Author:

Suo Lai1,Xue Zhijun2,Wang Puyu2,Wu Hongshan3,Chen Yao2,Shen Jing1ORCID

Affiliation:

1. Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China

2. Department II of Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China

3. School of Medicine, Nankai University, Tianjin, China

Abstract

Oral and maxillofacial tumors, trauma and infections are the main causes of jaw defects, whose clinical treatment is very complicated. With the development of biological tissue engineering, many biological materials have been widely used in various fields of stomatology, and they play a very important role in the repair and replacement of maxillofacial bone defects. In this study, we intended to prepare a graphene oxide/hyaluronic acid/chitosan (GO/HA/CS) composite hydrogel with different mass ratios of GO: 0.1% (0.1% GO/HA/CS), 0.25% (0.25% GO/HA/CS), 0.5% (0.5% GO/HA/CS), and 1% (1% GO/HA/CS), prepare it into a multilayered and stable composite scaffold through 3D-printing technology, observe the surface morphology of the composite scaffold through scanning electron microscopy (SEM), and then test its physical and chemical properties, mechanical properties, water swelling rate, in vitro degradation and other material properties. Moreover, the biological performance of the GO/HA/CS composite scaffold was studied through experiments, such as cell morphology observation, cell adhesion, cell proliferation, and live-dead cell staining. The results showed that through chemical cross-linking and 3D-printing technology, a porous (pore size: 450–580 μm) and multilayered GO/HA/CS biological scaffold could be successfully constructed, and its surface was an interconnected microporous structure, and the porosity decreased (94%−40%) gradually with the increase of GO. Meanwhile, with the change in GO concentration, some mechanical properties of the scaffold could be improved, such as water swelling rate, degradation rate, and elastic modulus. In addition, the composite scaffold with the appropriate amount of GO had almost no cytotoxicity and could promote cell growth and proliferation, especially 0.25% GO/HA/CS composite scaffold. Consequently, the 0.25% GO/HA/CS composite scaffold had excellent biological material properties and good biocompatibility with osteoblasts, which may provide a new idea for the repair of jaw defects.

Funder

the Scientific Research Fund of Tianjin Stomatological Hospital

tianjin municipal health commission

Tianjin Key Discipline Foundation of Medicine.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3