Full biodegradable elastomeric nanocomposites fabricated by chitin nanocrystal and poly(caprolactone-diol citrate) elastomer

Author:

Liang Kai12,Zhou Yajing3,Ji Yali3ORCID

Affiliation:

1. Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, China

2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China

3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China

Abstract

Chitin nanocrystal is a biocompatible and biodegradable nanofiller, with great potential in enhancing the mechanical and biological properties of polymers. Poly(caprolactone-diol citrate) is a kind of citrate-based biodegradable elastomer prepared by an additive-free melt polycondensation of polycaprolactone-diol and citric acid coupled with subsequent thermocuring. Here, a facile casting/evaporation method was utilized to prepare full biodegradable poly(caprolactone-diol citrate)/chitin nanocrystal nanocomposites, and their structure and properties were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, uniaxial tensile test, dynamic mechanical analysis, surface wettability and swelling analysis, thermogravimetric analysis, in vitro degradation, and cytocompatibility test. The results showed the chitin nanocrystals were uniformly distributed in the poly(caprolactone-diol citrate) matrix; with increasing chitin nanocrystal loading, the tensile modulus and strength significantly increased; furthermore, the incorporation of chitin nanocrystals endowed the poly(caprolactone-diol citrate) with more hydrophilicity, lower swelling in phosphate buffered saline solution, slow degradation rate, and greatly improved cytocompatibility. Thus, the chitin nanocrystal was a good bio-based nanofiller that could be used to tune the properties of poly(caprolactone-diol citrate) degradable bioelastomer.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3