Novel chitosan-poly(vinyl acetate) biomaterial suitable for additive manufacturing and bone tissue engineering applications

Author:

Fourie Jaundrie12ORCID,Taute Francois34,du Preez Louis15,de Beer Deon4

Affiliation:

1. African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

2. Department of Mechanical Engineering, North-West University, Potchefstroom, South Africa

3. TheraLon, Potchefstroom, South Africa

4. Central University of Technology, Free State, Bloemfontein, South Africa

5. South African Institute for Aquatic Biodiversity, Makhanda, South Africa

Abstract

Chitosan, a biocompatible and biodegradable natural polymer, offers great promise as a biomaterial for tissue engineering applications. Chitosan scaffolds have previously been fabricated using additive manufacturing techniques, however, the use of crosslinkers, weak mechanical stability and structural resolution remain problematic. In this study Chitosan-PVAc biopolymer blends were prepared using a non-organic solvent that can prepare a three-dimensional printable biopolymer in less time than conventional methods. Prepared films were characterised using SEM, FTIR and thermogravimetric analysis. Additionally, the swelling properties, biodegradability and printability of the scaffolds were also studied. The fabricated films were biodegradable within a 3-week period and showed controllable swelling properties. Results indicated no toxicity and cells attached onto films. Additionally, hydrogels showed antibacterial activity against S. aureus, S. epidermidis and E.coli, which could potentially prevent implant related infections. Additive manufacturing simulation of PVAc composite 3% chitosan and PVAc composite 4% chitosan were able to produce a layered scaffold without using crosslinkers and therefore confirming printability. Cytocompabability were assessed using a resazurin assay and cell attachment. From these results, we concluded that the printable PVAc composite 3% chitosan and PVAc composite 4% chitosan biopolymer blends meet the requirements of a biomaterial and can potentially be used for biomedical implants.

Funder

national research foundation

South African Department of Science and Technology, Collaborative Program for Additive Manufacturing

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3