Dynamics of polyelectrolyte complex formation and stability when a polycation is progressively added to a polyanion under physico-chemical conditions modeling blood

Author:

Leclercq L.1,Boustta M.2,Vert M.2

Affiliation:

1. Max Mousseron Institute of Biomolecules, UMR CNRS 5247, University Montpellier 1, Group CRBA, Faculty of Pharmacy, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France,

2. Max Mousseron Institute of Biomolecules, UMR CNRS 5247, University Montpellier 1, Group CRBA, Faculty of Pharmacy, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France

Abstract

The formation of polyelectrolyte complexes is known to depend on many factors, especially pH, temperature, and ionic strength, as well as acid—base properties and mixing conditions. In an approach aimed at by-passing the complexity of blood, the formation and the stability of complexes between oppositely charged polymers were studied in salted media (0.15N NaCl and 0.13 M, pH 7.4 PBS) at room temperature. Different molar masses of poly(L-lysine) were reacted with polyanions with different chemical structures and charge densities, namely: poly(acrylic acid), poly(L-lysine citramide), poly(L-lysine citramide imide), and poly(malic acid). A stepwise protocol was used to investigate the fractionation phenomena reported previously. After each addition, the precipitate was separated and analyzed. The polyanion macromolecules were fractionated according to their structure; no significant fractionation was observed for the polycation. The NaCl concentration, required to destabilize the complexes in the isolated fractions, was found to depend on the polycation molar mass and to vary linearly with log(polyanion Mw). Based on these data, the possible fate of polycationic species, and of polycation-based polyelectrolytic complex, when injected into blood, are addressed.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3