Classification of Attentional Tunneling Through Behavioral Indices

Author:

Kortschot Sean W.1,Jamieson Greg A.1

Affiliation:

1. University of Toronto, Ontario, Canada

Abstract

Objective The objective of this study was to develop a machine learning classifier to infer attentional tunneling through behavioral indices. This research serves as a proof of concept for a method for inferring operator state to trigger adaptations to user interfaces. Background Adaptive user interfaces adapt their information content or configuration to changes in operating context. Operator attentional states represent a promising class of triggers for these adaptations. Behavioral indices may be a viable alternative to physiological correlates for triggering interface adaptations based on attentional state. Method A visual search task sought to induce attentional tunneling in participants. We analyzed user interaction under tunnel and non-tunnel conditions to determine whether the paradigm was successful. We then examined the performance trade-offs stemming from attentional tunnels. Finally, we developed a machine learning classifier to identify patterns of interaction characteristics associated with attentional tunnels. Results The experimental paradigm successfully induced attentional tunnels. Attentional tunnels were shown to improve performance when information appeared within them, but to hinder performance when it appeared outside. Participants were found to be more tunneled in their second tunnel trial relative to their first. Our classifier achieved a classification accuracy similar to comparable studies (area under curve = 0.74). Conclusion Behavioral indices can be used to infer attentional tunneling. There is a performance trade-off from attentional tunneling, suggesting the opportunity for adaptive systems. Application This research applies to adaptive automation aimed at managing operator attention in information-dense work domains.

Funder

Natural Sciences and Engineering Research Council of Canada

Ontario Centres of Excellence

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing attentional issues in augmented reality with adaptive agents: Possibilities and challenges;International Journal of Human-Computer Studies;2024-10

2. Toward a multilevel framework of multicommunicating: Insights from a systematic review;Computers in Human Behavior Reports;2023-12

3. Consequences and Recurrence of Dangerous Occurrences in Air Transport in 1919-2018;Safety & Defense;2021-10-30

4. Characterizing Adaptive Display Interventions for Attentional Tunneling;Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021);2021-06-13

5. Enhancing Visitor Experience or Hindering Docent Roles: Attentional Issues in Augmented Reality Supported Installations;2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR);2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3