Evaluation of Biomechanical and Mental Workload During Human–Robot Collaborative Pollination Task

Author:

Yerebakan Mustafa Ozkan1ORCID,Gu Yu2,Gross Jason2,Hu Boyi1

Affiliation:

1. University of Florida, USA

2. West Virginia University, USA

Abstract

Objective The purpose of this study is to identify the potential biomechanical and cognitive workload effects induced by human robot collaborative pollination task, how additional cues and reliability of the robot influence these effects and whether interacting with the robot influences the participant’s anxiety and attitude towards robots. Background Human–Robot Collaboration (HRC) could be used to alleviate pollinator shortages and robot performance issues. However, the effects of HRC for this setting have not been investigated. Methods Sixteen participants were recruited. Four HRC modes, no cue, with cue, unreliable, and manual control were included. Three categories of dependent variables were measured: (1) spine kinematics (L5/S1, L1/T12, and T1/C7), (2) pupillary activation data, and (3) subjective measures such as perceived workload, robot-related anxiety, and negative attitudes towards robotics. Results HRC reduced anxiety towards the cobot, decreased joint angles and angular velocity for the L5/S1 and L1/T12 joints, and reduced pupil dilation, with the “with cue” mode producing the lowest values. However, unreliability was detrimental to these gains. In addition, HRC resulted in a higher flexion angle for the neck (i.e., T1/C7). Conclusion HRC reduced the physical and mental workload during the simulated pollination task. Benefits of the additional cue were minimal compared to no cues. The increased joint angle in the neck and unreliability affecting lower and mid back joint angles and workload requires further investigation. Application These findings could be used to inform design decisions for HRC frameworks for agricultural applications that are cognizant of the different effects induced by HRC.

Funder

US Department of Agriculture

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3