Long-Lasting Changes in Muscle Twitch Force During Simulated Work While Standing or Walking

Author:

Garcia Maria-Gabriela1,Wall Rudolf,Steinhilber Benjamin2,Läubli Thomas1,Martin Bernard J.3

Affiliation:

1. ETH Zürich, Zurich, Switzerland

2. University of Tübingen, Tubingen, Germany

3. University of Michigan, Ann Arbor

Abstract

Objective: The aim of this study was to evaluate the long-lasting effects of prolonged standing work on a hard floor or floor mat and slow-pace walking on muscle twitch force (MTF) elicited by electrical stimulation. Background: Prolonged standing work may alter lower-leg muscle function, which can be quantified by changes in the MTF amplitude and duration related to muscle fatigue. Ergonomic interventions have been proposed to mitigate fatigue and discomfort; however, their influences remain controversial. Method: Ten men and eight women simulated standing work in 320-min experiments with three conditions: standing on a hard floor or an antifatigue mat and walking on a treadmill, each including three seated rest breaks. MTF in the gastrocnemius-soleus muscles was evaluated through changes in signal amplitude and duration. Results: The significant decrease of MTF amplitude and an increase of duration after standing work on a hard floor and on a mat persisted beyond 1 hr postwork. During walking, significant MTF metrics changes appeared 30 min postwork. MTF amplitude decrease was not significant after the first 110 min in any of the conditions; however, MTF duration was significantly higher than baseline in the standing conditions. Conclusion: Similar long-lasting weakening of MTF was induced by standing on a hard floor and on an antifatigue mat. However, walking partially attenuated this phenomenon. Application: Mostly static standing is likely to contribute to alterations of MTF in lower-leg muscles and potentially to musculoskeletal disorders regardless of the flooring characteristics. Occupational activities including slow-pace walking may reduce such deterioration in muscle function.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3