Psychophysical Evaluation of Haptic Perception Under Augmentation by a Handheld Device

Author:

Wu Bing1,Klatzky Roberta2,Lee Randy3,Shivaprabhu Vikas3,Galeotti John2,Siegel Mel2,Schuman Joel S.3,Hollis Ralph2,Stetten George3

Affiliation:

1. Arizona State University, Mesa, Arizona

2. Carnegie Mellon University, Pittsburgh, Pennsylvania

3. University of Pittsburgh, Pennsylvania

Abstract

Objective: This study investigated the effectiveness of force augmentation in haptic perception tasks. Background: Considerable engineering effort has been devoted to developing force augmented reality (AR) systems to assist users in delicate procedures like microsurgery. In contrast, far less has been done to characterize the behavioral outcomes of these systems, and no research has systematically examined the impact of sensory and perceptual processes on force augmentation effectiveness. Method: Using a handheld force magnifier as an exemplar haptic AR, we conducted three experiments to characterize its utility in the perception of force and stiffness. Experiments 1 and 2 measured, respectively, the user’s ability to detect and differentiate weak force (<0.5 N) with or without the assistance of the device and compared it to direct perception. Experiment 3 examined the perception of stiffness through the force augmentation. Results: The user’s ability to detect and differentiate small forces was significantly improved by augmentation at both threshold and suprathreshold levels. The augmentation also enhanced stiffness perception. However, although perception of augmented forces matches that of the physical equivalent for weak forces, it falls off with increasing intensity. Conclusion: The loss in the effectiveness reflects the nature of sensory and perceptual processing. Such perceptual limitations should be taken into consideration in the design and development of haptic AR systems to maximize utility. Application: The findings provide useful information for building effective haptic AR systems, particularly for use in microsurgery.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3