Classification of Driver Distraction: A Comprehensive Analysis of Feature Generation, Machine Learning, and Input Measures

Author:

McDonald Anthony D.1ORCID,Ferris Thomas K.1,Wiener Tyler A.1ORCID

Affiliation:

1. Texas A&M University, College Station, USA

Abstract

Objective The objective of this study was to analyze a set of driver performance and physiological data using advanced machine learning approaches, including feature generation, to determine the best-performing algorithms for detecting driver distraction and predicting the source of distraction. Background Distracted driving is a causal factor in many vehicle crashes, often resulting in injuries and deaths. As mobile devices and in-vehicle information systems become more prevalent, the ability to detect and mitigate driver distraction becomes more important. Method This study trained 21 algorithms to identify when drivers were distracted by secondary cognitive and texting tasks. The algorithms included physiological and driving behavioral input processed with a comprehensive feature generation package, Time Series Feature Extraction based on Scalable Hypothesis tests. Results Results showed that a Random Forest algorithm, trained using only driving behavior measures and excluding driver physiological data, was the highest-performing algorithm for accurately classifying driver distraction. The most important input measures identified were lane offset, speed, and steering, whereas the most important feature types were standard deviation, quantiles, and nonlinear transforms. Conclusion This work suggests that distraction detection algorithms may be improved by considering ensemble machine learning algorithms that are trained with driving behavior measures and nonstandard features. In addition, the study presents several new indicators of distraction derived from speed and steering measures. Application Future development of distraction mitigation systems should focus on driver behavior–based algorithms that use complex feature generation techniques.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3