Perceptual Thresholds for Vibration Transmitted to Road Cyclists

Author:

Ayachi Fouaz S.1,Drouet Jean-Marc,Champoux Yvan2,Guastavino Catherine1ORCID

Affiliation:

1. McGill University, Montreal, Quebec, Canada

2. Université de Sherbrooke, Sherbrooke, Quebec, Canada

Abstract

Objectives: In this article, we seek to determine how sensitive road cyclists are to vertical vibration transmitted while riding a road bicycle and to propose metrics for the evaluation of dynamic comfort. Background: Road cyclists are exposed to random-type excitation due to road roughness. Vibration transmitted affects dynamic comfort. But how sensitive are cyclists to vibration level? What are the best metrics to measure the amount of vibration transmitted to cyclists? Previous studies used sinusoidal excitation with participants on rigid seats and measured acceleration. Methods: We use a psychophysical estimation of Just Noticeable Differences in Level (JNDL) for vertical vibration transmitted to cyclists on a road simulator. In Experiment 1, we estimate the JNDL for whole-body vibration using vertical excitation on both wheels simultaneously (20 male cyclists). In Experiment 2, we estimate the JNDL at two different points of contact by applying the same signal to only the hands or the buttocks (9 male cyclists). Results: The JNDLs are expressed in terms of acceleration and power transmitted to the cyclist. We compare the JNDLs expressed with these 2 metrics and measured at different points of contact. Conclusion: Using these two metrics and at all points of contact, vibration magnitude needs to be reduced by at least 15%, for the change to be detectable by road cyclists. Application: A road bicycle needs to transmit at least 15% less vibration for male cyclists to detect an improvement in dynamic comfort. Dynamic bicycle comfort can be measured in terms of a new metric: power transmitted to the cyclist.

Funder

Cervélo / Vroomen White Design

Natural Sciences and Engineering Council of Canada

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3