Multitasking Induced Contextual Blindness

Author:

Cooper Joel M.1,Strayer David L.2

Affiliation:

1. MEA Forensic, USA

2. University of Utah, USA

Abstract

Objective To examine the impact of secondary task performance on contextual blindness arising from the suppression and masking of temporal and spatial sequence learning. Background Dual-task scenarios can lead to a diminished ability to use environmental cues to guide attention, a phenomenon that is related to multitasking-induced inattentional blindness. This research aims to extend the theoretical understanding of how secondary tasks can impair attention and memory processes in sequence learning and access. Method We conducted three experiments. In Experiment 1, we used a serial reaction time task to investigate the impact of a secondary tone counting task on temporal sequence learning. In Experiment 2, we used a contextual cueing task to examine the effects of dual-task performance on spatial cueing. In Experiment 3, we integrated and extended these concepts to a simulated driving task. Results Across the experiments, the performance of a secondary task consistently suppressed (all experiments) and masked task learning (experiments 1 and 3). In the serial response and spatial search tasks, dual-task conditions reduced the accrual of sequence knowledge and impaired knowledge expression. In the driving simulation, similar patterns of learning suppression from multitasking were also observed. Conclusion The findings suggest that secondary tasks can significantly suppress and mask sequence learning in complex tasks, leading to a form of contextual blindness characterized by impairments in the ability to use environmental cues to guide attention and anticipate future events. Application These findings have implications for both skill acquisition and skilled performance in complex domains such as driving, aviation, manufacturing, and human–computer interaction.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3