A Review of Human Performance Models for Prediction of Driver Behavior and Interactions With In-Vehicle Technology

Author:

Park Junho1,Zahabi Maryam1ORCID

Affiliation:

1. Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA

Abstract

Objective This study investigated the use of human performance modeling (HPM) approach for prediction of driver behavior and interactions with in-vehicle technology. Background HPM has been applied in numerous human factors domains such as surface transportation as it can quantify and predict human performance; however, there has been no integrated literature review for predicting driver behavior and interactions with in-vehicle technology in terms of the characteristics of methods used and variables explored. Method A systematic literature review was conducted using Compendex, Web of Science, and Google Scholar. As a result, 100 studies met the inclusion criteria and were reviewed by the authors. Model characteristics and variables were summarized to identify the research gaps and to provide a lookup table to select an appropriate method. Results The findings provided information on how to select an appropriate HPM based on a combination of independent and dependent variables. The review also summarized the characteristics, limitations, applications, modeling tools, and theoretical bases of the major HPMs. Conclusion The study provided a summary of state-of-the-art on the use of HPM to model driver behavior and use of in-vehicle technology. We provided a table that can assist researchers to find an appropriate modeling approach based on the study independent and dependent variables. Application The findings of this study can facilitate the use of HPM in surface transportation and reduce the learning time for researchers especially those with limited modeling background.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3