Evaluating Effective Connectivity of Trust in Human–Automation Interaction: A Dynamic Causal Modeling (DCM) Study

Author:

Huang Jiali1ORCID,Choo Sanghyun1,Pugh Zachary H.1,Nam Chang S.1

Affiliation:

1. North Carolina State University, Raleigh, USA

Abstract

Objective Using dynamic causal modeling (DCM), we examined how credibility and reliability affected the way brain regions exert causal influence over each other—effective connectivity (EC)—in the context of trust in automation. Background Multiple brain regions of the central executive network (CEN) and default mode network (DMN) have been implicated in trust judgment. However, the neural correlates of trust judgment are still relatively unexplored in terms of the directed information flow between brain regions. Method Sixteen participants observed the performance of four computer algorithms, which differed in credibility and reliability, of the system monitoring subtask of the Air Force Multi-Attribute Task Battery (AF-MATB). Using six brain regions of the CEN and DMN commonly identified to be activated in human trust, a total of 30 (forward, backward, and lateral) connection models were developed. Bayesian model averaging (BMA) was used to quantify the connectivity strength among the brain regions. Results Relative to the high trust condition, low trust showed unique presence of specific connections, greater connectivity strengths from the prefrontal cortex, and greater network complexity. High trust condition showed no backward connections. Conclusion Results indicated that trust and distrust can be two distinctive neural processes in human–automation interaction—distrust being a more complex network than trust, possibly due to the increased cognitive load. Application The causal architecture of distributed brain regions inferred using DCM can help not only in the design of a balanced human–automation interface design but also in the proper use of automation in real-life situations.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3