Knowing When to Pass: The Effect of AI Reliability in Risky Decision Contexts

Author:

Elder Hannah1,Canfield Casey2ORCID,Shank Daniel B.2,Rieger Tobias3,Hines Casey2

Affiliation:

1. Technische Universität Berlin, Berlin, Germany, and University of Missouri-Columbia, Columbia, Missouri, USA

2. Missouri University of Science & Technology, Rolla, Missouri, USA

3. Technische Universität Berlin, Berlin, Germany

Abstract

Objective This study manipulates the presence and reliability of AI recommendations for risky decisions to measure the effect on task performance, behavioral consequences of trust, and deviation from a probability matching collaborative decision-making model. Background Although AI decision support improves performance, people tend to underutilize AI recommendations, particularly when outcomes are uncertain. As AI reliability increases, task performance improves, largely due to higher rates of compliance (following action recommendations) and reliance (following no-action recommendations). Methods In a between-subject design, participants were assigned to a high reliability AI, low reliability AI, or a control condition. Participants decided whether to bet that their team would win in a series of basketball games tying compensation to performance. We evaluated task performance (in accuracy and signal detection terms) and the behavioral consequences of trust (via compliance and reliance). Results AI recommendations improved task performance, had limited impact on risk-taking behavior, and were under-valued by participants. Accuracy, sensitivity ( d’), and reliance increased in the high reliability AI condition, but there was no effect on response bias ( c) or compliance. Participant behavior was only consistent with a probability matching model for compliance in the low reliability condition. Conclusion In a pay-off structure that incentivized risk-taking, the primary value of the AI recommendations was in determining when to perform no action (i.e., pass on bets). Application In risky contexts, designers need to consider whether action or no-action recommendations will be more influential to design appropriate interventions.

Funder

DAAD PROMOS Scholarship

Division of Computer and Network Systems

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3