Detection of Affective States From Text and Speech for Real-Time Human–Computer Interaction

Author:

Calix Ricardo A.1,Javadpour Leili1,Knapp Gerald M.1

Affiliation:

1. Louisiana State University, Baton Rouge, Louisiana

Abstract

Objective: The goal of this work is to develop and test an automated system methodology that can detect emotion from text and speech features. Background: Affective human–computer interaction will be critical for the success of new systems that will be prevalent in the 21st century. Such systems will need to properly deduce human emotional state before they can determine how to best interact with people. Method: Corpora and machine learning classification models are used to train and test a methodology for emotion detection. The methodology uses a stepwise approach to detect sentiment in sentences by first filtering out neutral sentences, then distinguishing among positive, negative, and five emotion classes. Results: Results of the classification between emotion and neutral sentences achieved recall accuracies as high as 77% in the University of Illinois at Urbana-Champaign (UIUC) corpus and 61% in the Louisiana State University medical drama (LSU-MD) corpus for emotion samples. Once neutral sentences were filtered out, the methodology achieved accuracy scores for detecting negative sentences as high as 92.3%. Conclusion: Results of the feature analysis indicate that speech spectral features are better than speech prosodic features for emotion detection. Accumulated sentiment composition text features appear to be very important as well. This work contributes to the study of human communication by providing a better understanding of how language factors help to best convey human emotion and how to best automate this process. Application: Results of this study can be used to develop better automated assistive systems that interpret human language and respond to emotions through 3-D computer graphics.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3