Field Validation of the Fanger Thermal Comfort Model

Author:

Howell William C.1,Kennedy Pamela A.1

Affiliation:

1. Rice University, Houston, Texas

Abstract

Quantitative models of “thermal comfort” commonly involve prediction equations with “votes” on a thermal sensation scale as the criterion and physical variables (temperature, humidity, activity, clothing) as predictors. One established model of this sort was developed by Fanger using laboratory data. The present study sought to validate this model in realistic indoor settings by correlating predicted with measured thermal sensation judgments for 521 resident employees and students. Several demographic and cognitive variables were also measured, and direct comfort judgments were taken for comparison with the main criterion. Results provided weak support for the validity of the physical-predictor model. More important, however, was the substantial increase in predictiveness contributed by cognitive variables, and the demonstration that “comfort” defined by thermal sensation votes is not the same as that measured directly. Implications for energy conservation proposals are discussed.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3