How Do Violinists Adapt to Dynamic Assistive Support? A Study Focusing on Kinematics, Muscle Activity, and Musical Performance

Author:

Ziane Clara12ORCID,Michaud Benjamin1,Begon Mickaël13,Dal Maso Fabien12

Affiliation:

1. Université de Montréal, Laval, QC, Canada

2. Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Montreal, QC, Canada

3. Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada

Abstract

Objective Assessing violinists’ motor and musical performance adaptations to dynamic assistive support (DAS) provided by a passive device, using a force-field adaptation paradigm. Background Up to 93% of instrumentalists are affected by musculoskeletal injuries and particularly violinists. The repetitive nature of their work may lead to muscle fatigue, an injury risk factor. DAS has been used in occupational settings to minimize muscle activations and limit fatigue accumulation. DAS may however affect motor and musical performance. Method Fifteen expert violinists were equipped with reflective markers and surface and intramuscular electromyography (EMG) sensors. Movements, muscle activations, and sound were recorded while participants completed three experimental conditions for which they continuously played a 13-s musical excerpt: Control (no DAS), Adaptation (DAS), and Washout (no DAS). DAS was applied at the left elbow (violin-holding side). Conditions were repeated 1 week later. Participants later listened to their own audio recordings playing with and without DAS and blindly assessed their performances. Linear mixed models were used to compare DAS and no-DAS conditions’ kinematic, EMG, and musical performance data. Results DAS perturbed user kinematics but reduced mean activations of left medial deltoid and superior trapezius. Joint kinematic and muscle activation patterns between DAS and no DAS conditions however remained similar. Musical performance was unchanged with DAS. Conclusion Though DAS modified violinists’ upper-limb configurations, resulting kinematics were not detrimental to musical performance. Reduced muscle activations with DAS could contribute to lessening muscle fatigue. Application Although its effect on muscle fatigue should be further investigated, DAS might be useful in preventing violinists’ injuries.

Funder

Natural Sciences and Engineering Research Council of Canada

Fondation Marcel-Bleustein Blanchet pour la Vocation

Mitacs

Canada First Research Excellence Fund

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3