Contributions of Stereopsis and Aviation Experience to Simulated Rotary Wing Altitude Estimation

Author:

Hartle Brittney1,Sudhama Aishwarya1,Deas Lesley M.1,Allison Robert S.,Irving Elizabeth L.2,Glaholt Mackenzie G.3,Wilcox Laurie M.1

Affiliation:

1. York University, Toronto, Ontario, Canada

2. University of Waterloo, Ontario, Canada

3. Defence Research and Development Canada, Toronto, Ontario, Canada

Abstract

Objective We examined the contribution of binocular vision and experience to performance on a simulated helicopter flight task. Background Although there is a long history of research on the role of binocular vision and stereopsis in aviation, there is no consensus on its operational relevance. This work addresses this using a naturalistic task in a virtual environment. Method Four high-resolution stereoscopic terrain types were viewed monocularly and binocularly. In separate experiments, we evaluated performance of undergraduate students and military aircrew on a simulated low hover altitude judgment task. Observers were asked to judge the distance between a virtual helicopter skid and the ground plane. Results Our results show that for both groups, altitude judgments are more accurate in the binocular viewing condition than in the monocular condition. However, in the monocular condition, aircrew were more accurate than undergraduate observers in estimating height of the skid above the ground. Conclusion At simulated altitudes of 5 ft (1.5 m) or less, binocular vision provides a significant advantage for estimation of the depth separation between the landing skid and the ground, regardless of relevant operational experience. However, when binocular cues are unavailable aircrew outperform undergraduate observers, a result that likely reflects the impact of training on the ability to interpret monocular depth cues.

Funder

Canadian Institute for Military and Veteran Health Research

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3