Takeover Time in Highly Automated Vehicles: Noncritical Transitions to and From Manual Control

Author:

Eriksson Alexander1,Stanton Neville A.1

Affiliation:

1. University of Southampton, Southampton, United Kingdom

Abstract

Objective: The aim of this study was to review existing research into driver control transitions and to determine the time it takes drivers to resume control from a highly automated vehicle in noncritical scenarios. Background: Contemporary research has moved from an inclusive design approach to adhering only to mean/median values when designing control transitions in automated driving. Research into control transitions in highly automated driving has focused on urgent scenarios where drivers are given a relatively short time span to respond to a request to resume manual control. We found a paucity in research into more frequent scenarios for control transitions, such as planned exits from highway systems. Method: Twenty-six drivers drove two scenarios with an automated driving feature activated. Drivers were asked to read a newspaper, or to monitor the system, and to relinquish, or resume, control from the automation when prompted by vehicle systems. Results: Significantly longer control transition times were found between driving with and without secondary tasks. Control transition times were substantially longer than those reported in the peer-reviewed literature. Conclusion: We found that drivers take longer to resume control when under no time pressure compared with that reported in the literature. Moreover, we found that drivers occupied by a secondary task exhibit larger variance and slower responses to requests to resume control. Workload scores implied optimal workload. Application: Intra- and interindividual differences need to be accommodated by vehicle manufacturers and policy makers alike to ensure inclusive design of contemporary systems and safety during control transitions.

Funder

Seventh Framework Programme

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 452 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3