Predicting Sagittal Plane Lifting Postures From Image Bounding Box Dimensions

Author:

Greene Runyu L.,Hu Yu Hen,Difranco Nicholas,Wang Xuan1,Lu Ming-Lun2,Bao Stephen,Lin Jia-Hua3,Radwin Robert G.1ORCID

Affiliation:

1. University of Wisconsin-Madison, USA

2. National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA

3. Washington Department of Labor and Industries, Olympia, USA

Abstract

Objective: A method for automatically classifying lifting postures from simple features in video recordings was developed and tested. We explored if an “elastic” rectangular bounding box, drawn tightly around the subject, can be used for classifying standing, stooping, and squatting at the lift origin and destination. Background: Current marker-less video tracking methods depend on a priori skeletal human models, which are prone to error from poor illumination, obstructions, and difficulty placing cameras in the field. Robust computer vision algorithms based on spatiotemporal features were previously applied for evaluating repetitive motion tasks, exertion frequency, and duty cycle. Methods: Mannequin poses were systematically generated using the Michigan 3DSSPP software for a wide range of hand locations and lifting postures. The stature-normalized height and width of a bounding box were measured in the sagittal plane and when rotated horizontally by 30°. After randomly ordering the data, a classification and regression tree algorithm was trained to classify the lifting postures. Results: The resulting tree had four levels and four splits, misclassifying 0.36% training-set cases. The algorithm was tested using 30 video clips of industrial lifting tasks, misclassifying 3.33% test-set cases. The sensitivity and specificity, respectively, were 100.0% and 100.0% for squatting, 90.0% and 100.0% for stooping, and 100.0% and 95.0% for standing. Conclusions: The tree classification algorithm is capable of classifying lifting postures based only on dimensions of bounding boxes. Applications: It is anticipated that this practical algorithm can be implemented on handheld devices such as a smartphone, making it readily accessible to practitioners.

Funder

National Institute for Occupational Safety and Health

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3