Development and Human Factors Evaluation of a Portable Auditory Localization Training System

Author:

Thompson Brandon S.1,Lee Kichol2,Casali John G.2,Cave Kara M.3

Affiliation:

1. United States Military Academy, West Point, NY, USA

2. Virginia Polytechnic Institute and State University (Virginia Tech) and Hearing, Ergonomics & Acoustics Resources (HEAR) LLC, Blacksburg, VA, USA

3. Womack Army Medical Center, Fort Liberty, NC, USA

Abstract

Objective To design and develop a Portable Auditory Localization Acclimation Training (PALAT) system capable of producing psychoacoustically accurate localization cues; evaluate the training effect against a proven full-scale, laboratory-grade system under three listening conditions; and determine if the PALAT system is sensitive to differences among electronic level-dependent hearing protection devices (HPDs). Background In-laboratory auditory localization training has demonstrated the ability to improve localization performance with the open (natural) ear, that is, unoccluded, and while wearing HPDs. The military requires a portable system capable of imparting similar training benefits as those demonstrated in laboratory experiments. Method In a full-factorial repeated measures design experiment, 12 audiometrically normal participants completed localization training and testing using an identical, optimized training protocol on two training systems under three listening conditions (open ear, TEP-100, and ComTac™ III). Statistical tests were performed on mean absolute accuracy score and front-back reversal errors. Results No statistical difference existed between the PALAT and laboratory-grade DRILCOM systems on two dependent localization accuracy measurements at all stages of training. In addition, the PALAT system detected the same localization performance differences among the three listening conditions. Conclusion The PALAT system imparted similar training benefits as the DRILCOM system and was sensitive to HPD localization performance differences. Application The user-operable PALAT system and optimized training protocol can be employed by the military, law enforcement, and various industries, to improve auditory localization performance in conditions where auditory situation awareness is critical to safety.

Funder

Office of Naval Research

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3