Affiliation:
1. Tencent Technology, Shanghai, China
2. University of Michigan, Ann Arbor, MI, USA
Abstract
Objective The aim of this study was to establish the effects of simultaneous and asynchronous masking on the detection and identification of visual and auditory alarms in close temporal proximity. Background In complex and highly coupled systems, malfunctions can trigger numerous alarms within a short period of time. During such alarm floods, operators may fail to detect and identify alarms due to asynchronous and simultaneous masking. To date, the effects of masking on detection and identification have been studied almost exclusively for two alarms during single-task performance. This research examines 1) how masking affects alarm detection and identification in multitask environments and 2) whether those effects increase as a function of the number of alarms. Method Two experiments were conducted using a simulation of a drone-based package delivery service. Participants were required to ensure package delivery and respond to visual and auditory alarms associated with eight drones. The alarms were presented at various stimulus onset asynchronies (SOAs). The dependent measures included alarm detection rate, identification accuracy, and response time. Results Masking was observed intramodally and cross-modally for visual and auditory alarms. The SOAs at which asynchronous masking occurred were longer than reported in basic research on masking. The effects of asynchronous and, even more so, simultaneous masking became stronger as the number of alarms increased. Conclusion Masking can lead to breakdowns in the detection and identification of alarms in close temporal proximity in complex data-rich domains. Application The findings from this research provide guidance for the design of alarm systems.
Subject
Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献