Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non–Driving Related Tasks on Takeover Time and Takeover Quality

Author:

Naujoks FrederikORCID,Purucker Christian,Wiedemann Katharina1,Marberger Claus2

Affiliation:

1. Würzburg Institute for Traffic Sciences GmbH (WIVW), Veitshöchheim, Germany

2. Robert Bosch GmbH, Renningen, Germany

Abstract

Objective: This study aimed at investigating the driver’s takeover performance when switching from working on different non–driving related tasks (NDRTs) while driving with a conditionally automated driving function (SAE L3), which was simulated by a Wizard of Oz vehicle, to manual vehicle control under naturalistic driving conditions. Background: Conditionally automated driving systems, which are currently close to market introduction, require the user to stay fallback ready. As users will be allowed to engage in more complex NDRTs during the automated drive than when driving manually, the time needed to regain full manual control could likely be increased. Method: Thirty-four users engaged in different everyday NDRTs while driving automatically with a Wizard of Oz vehicle. After approximately either 5 min or 15 min of automated driving, users were requested to take back vehicle control in noncritical situations. The test drive took place in everyday traffic on German freeways in the metropolitan area of Stuttgart. Results: Particularly tasks that required users to turn away from the central road scene or hold an object in their hands led to increased takeover times. Accordingly, increased variance in the driver’s lane position was found shortly after the switch to manual control. However, the drivers rated the takeover situations to be mostly “harmless.” Conclusion: Drivers managed to regain control over the vehicle safely, but they needed more time to prepare for the manual takeover when the NDRTs caused motoric workload. Application: The timings found in the study can be used to design comfortable and safe takeover concepts for automated vehicles.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3