Driver Situation Awareness for Regaining Control from Conditionally Automated Vehicles: A Systematic Review of Empirical Studies

Author:

Tan Xiaomei12,Zhang Yiqi1ORCID

Affiliation:

1. Pennsylvania State University, University Park, USA

2. Sichuan University - Pittsburgh Institute, China

Abstract

Objective An up-to-date and thorough literature review is needed to identify factors that influence driver situation awareness (SA) during control transitions in conditionally automated vehicles (AV). This review also aims to ascertain SA components required for takeovers, aiding in the design and evaluation of human–vehicle interfaces (HVIs) and the selection of SA assessment methodologies. Background Conditionally AVs alleviate the need for continuous road monitoring by drivers yet necessitate their reengagement during control transitions. In these instances, driver SA is crucial for effective takeover decisions and subsequent actions. A comprehensive review of influential SA factors, SA components, and SA assessment methods will facilitate driving safety in conditionally AVs but is still lacking. Method A systematic literature review was conducted. Thirty-four empirical research articles were screened out to meet the criteria for inclusion and exclusion. Results A conceptual framework was developed, categorizing 23 influential SA factors into four clusters: task/system, situational, individual, and nondriving-related task factors. The analysis also encompasses an examination of pertinent SA components and corresponding HVI designs for specific takeover events, alongside an overview of SA assessment methods for conditionally AV takeovers. Conclusion The development of a conceptual framework outlining influential SA factors, the examination of SA components and their suitable design of presentation, and the review of SA assessment methods collectively contribute to enhancing driving safety in conditionally AVs. Application This review serves as a valuable resource, equipping researchers and practitioners with insights to guide their efforts in evaluating and enhancing driver SA during conditionally AV takeovers.

Funder

National Science Foundation

PSU/Technion Marcus Funds

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3