Measuring Patterns in Team Interaction Sequences Using a Discrete Recurrence Approach

Author:

Gorman Jamie C.1,Cooke Nancy J.,Amazeen Polemnia G.,Fouse Shannon2

Affiliation:

1. Texas Tech University

2. Arizona State University

Abstract

Objective: Recurrence-based measures of communication determinism and pattern information are described and validated using previously collected team interaction data. Background: Team coordination dynamics has revealed that “mixing” team membership can lead to flexible interaction processes, but keeping a team “intact” can lead to rigid interaction processes. We hypothesized that communication of intact teams would have greater determinism and higher pattern information compared to that of mixed teams. Method: Determinism and pattern information were measured from three-person Uninhabited Air Vehicle team communication sequences over a series of 40-minute missions. Because team members communicated using push-to-talk buttons, communication sequences were automatically generated during each mission. Results: The Composition × Mission determinism effect was significant. Intact teams’ determinism increased over missions, whereas mixed teams’ determinism did not change. Intact teams had significantly higher maximum pattern information than mixed teams. Conclusion: Results from these new communication analysis methods converge with content-based methods and support our hypotheses. Application: Because they are not content based, and because they are automatic and fast, these new methods may be amenable to real-time communication pattern analysis.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3