The Effect of Apparent Latency on Simulator Sickness While Using a See-Through Helmet-Mounted Display

Author:

Buker Timothy J.1,Vincenzi Dennis A.2,Deaton John E.1

Affiliation:

1. Florida Institute of Technology, Melbourne, Florida

2. Naval Air Warfare Center Training Systems Division, Orlando, Florida

Abstract

Objective: The aim of this study was to determine the effect of head movement frequency and predictive compensation on (a) latency produced in a monocular see-through helmet-mounted display (HMD) test bed and (b) simulator sickness experienced by users wearing the HMD. Background: There is conflicting research regarding latency as a significant factor in the onset of simulator sickness. Predictive compensation has been shown to mitigate the magnitude of latency, but little is known about the extent of its effect on simulator sickness. Method: A video camera recorded HMD and simulator imagery to accurately measure apparent latency produced at three head movement frequencies. Predictive compensation strategies were manipulated to measure the difference in apparent latency produced by the test bed in various conditions. Similar methodology was employed with human participants to measure simulator sickness experienced by users of this test bed. Results: In Experiment 1, apparent latency increased significantly as head movement frequency increased. Predictive compensation strategies significantly reduced apparent latency present in the test bed. In Experiment 2, predictive compensation significantly reduced the magnitude of simulator sickness. Conclusion: Predictive compensation can be effectively implemented to reduce apparent latency, resulting in a lower magnitude of simulator sickness. Application: Potential applications include HMD use in which head position is tracked and visual imagery is linked to head or body movement, such as in virtual and augmented reality systems, and is thus critical to functionality and performance.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3