Electroplating of HAp-brushite coating on metallic bioimplants with advanced hemocompatibility and osteocompatibility properties

Author:

Wang Yanhong12,Wu Bing3,Ai Songtao3,Wan Daqian12ORCID

Affiliation:

1. Department of Orthopedics, Tongji Hospital affiliated with Tongji University School of Medicine, Shanghai, China

2. Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People’s Republic of China, Shanghai, China

3. Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

In cases of severe bone tissue injuries, the use of metallic bioimplants is quite widespread due to their high strength, high fracture toughness, hardness, and corrosion resistance. However, they lack adequate biocompatibility and show poor metal-tissue integration during the post-operative phase. To mitigate this drawback, it is beneficial to add a biocompatible polymer layer to ensure a quick growth of cell or tissue over the surface of metallic bioimplant material. Furthermore, this additional layer should possess good adherence with the underlying material and also accompany a rapid bonding between the tissue and the implant material, in order to reduce the recovery time for the patient. Therefore, in this work, we report a novel green electroplating route for growing porous hydroxyapatite-brushite coatings on a stainless steel surface. The malic acid used for the production of hydroxyapatite-brushite coatings has been obtained from an extract of locally available apple fruit ( Malus domestica). We demonstrate the effect of electroplating parameters on the structural morphology of the electroplated composite layer via XRD, SEM with EDS, and FTIR characterization techniques and report an optimized set of electroplating parameters that will yield the best composite coating in terms of thickness, adherence to substrate and speed. The hemocompatibility and osteocompatibility studies on the electroplated composites coating show this technology’s effectiveness and potential applicability in biomedical applications. Compared to other routes reported in the literature, this electroplating route is quicker and yields better composite coatings with faster bone tissue growth potential.

Funder

National Scientific Foundation of China

Clinical Research Plan of SHDC

school of medicine, shanghai jiao tong university

Fundamental Research Funds for the Central Universities

science and technology commission of shanghai municipality

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3