Comparative evaluation of two collagen-based biomaterials with different compositions used for bone graft: An experimental animal study

Author:

Gehrke Sergio Alexandre1234ORCID,Aramburú Júnior Jaime1,Treichel Tiago Luis Eliers5,Rodriguez Fernando1,N de Aza Piedad3,Dedavid Berenice Anina4

Affiliation:

1. Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay

2. Department of Biotechnology. Universidad Católica de Murcia (UCAM), Murcia, Spain

3. Instituto de Bioingenieria, Universidad Miguel Hernández, Elche (Alicante), Spain

4. Department of Materials Engineering, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil

5. Department of Anatomy, Faculty of Veterinary, Universidade de Rio Verde, Rio Verde - GO, Brazil

Abstract

A large number of materials with different compositions and shapes have been proposed and studied for the purpose of bone tissue regeneration. Collagen-based materials have shown promising results for this application, with improved physicochemical properties. The aim of the present in vivo animal study was to evaluate and compare two commercially available collagen-based biomaterials for bone regeneration, with these being implanted in circumferential bone defects created in the calvarium of rabbits. Twenty rabbits received bilateral parietal osteotomies, performed with the aid of a 6.5 mm diameter trephine. Two groups were created: the BC group, where the defect was filled with a scaffold composed of 90% bovine bone particles and 10% porcine collagen, and the EG group, where the defect was filled with a scaffold composed of 75% hydroxyapatite particles of bovine origin and 25% bovine collagen. Ten animals were sacrificed at 30 days and another 10 at 45 days after implantation, and the samples were processed and histologically analyzed. In the evaluations of the samples at 30 days, no important differences were found in the results. However, in the samples at 45 days after surgery, the EG group showed better results than the BC group samples, mainly in terms of the amount of bone matrix formation ( P < 0.0001) and the volume in area measured in each sample, where the EG group had a value 65% higher than that in the BC group samples. Based on the results obtained, we conclude that the amount of collagen and the particle characteristics present in the composition of the scaffolds can directly influence the amount of neoformation and/or bone regeneration.

Funder

MCIN/AEI

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3