Stress analysis of sandwich composite beam induced by piezoelectric layer

Author:

Her Shiuh-Chuan1,Chen Han-Yung1

Affiliation:

1. Department of Mechanical Engineering, Yuan Ze University, Chung-Li, Taiwan

Abstract

Introduction: Smart structures equipped with piezoelectric devices to sense and actuate the structure could be used in many engineering applications. To explore the smart structure further and apply it to more complex structures, some problems are critical to be concerned. Among them, delamination due to the high stress is an important issue since its serious effect on the strength and stiffness of the composite structure. Method: In this investigation, a piezoelectric layer is embedded into the host structure to form a sandwich composite structure. The piezoelectric layer is subjected to an electric voltage, yielding the bending effect on the sandwich composite structure. A theoretical model based on the Euler beam theory and interfacial continuity is presented to determine the stresses of the sandwich composite beam caused by the piezoelectric layer. Results: The influences of the embedded depth and Young’s modulus of the piezoelectric layer on the stress distribution of the sandwich composite beam are investigated through a parametric study. The analytical solutions are verified by the finite element method. Good agreement is achieved between the present approach and the finite element method. Conclusions: Numerical analysis indicates that the maximum tensile stresses in the top and bottom layers are decreasing with the increase of the embedded depth, while the maximum compressive stress in the lead zirconate titanate layer is increasing with the increase of the embedded depth. Both the top and bottom layers are subjected to tensile stress and increasing with the increase of the Young’s modulus ratio, while the piezoelectric layer is subjected to compressive stress and increasing with the increase of the Young’s modulus ratio.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3