Bionanocomposites based on a covalent network of chitosan and edge functionalized graphene layers

Author:

Barbera Vincenzina1ORCID,Torrisi Giulio1,Galimberti Maurizio1

Affiliation:

1. Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy

Abstract

In this study, carbon papers and aerogels were prepared from chitosan and graphene layers with aldehydic edge functional groups (G-CHO) able to form chemical bonds with chitosan and thus to form a crosslinked network. A high surface area graphite was edge functionalized with hydroxyl groups (G-OH) through the reaction with KOH. G-CHO, with 4.5 mmol/g of functional group, was prepared from G-OH by means of the Reimer-Tieman reaction. Characterization of the graphitic materials was performed with elemental analysis, titration, X-ray analysis, Raman spectroscopy and by estimating their Hansen solubility parameters. CS and G-CHO were mixed with mortar and pestle and carbon papers and aerogels were obtained from a stable acidic water suspension through casting and liophilization, respectively. Free standing and foldable carbon papers and monolithic aerogels based on a continuous covalent network between G-CHO and CS were prepared. G-CHO, which had about 22 stacked layers, was extensively exfoliated in the carbon paper, as confirmed by the absence of the 002 reflection of the graphitic crystallites in the XRD pattern. Carbon paper was found to be resistant to solvents and to be stable for pH ⩾ 7. Composites revealed electrical conductivity. The covalent network between the graphene layers and CS, suggested by the IR findings, accounts for these results. This work demonstrates the effectiveness of a continuous covalent network between chitosan and graphene layers edge functionalized with tailor made functional groups for the preparation of carbon papers and aerogels and paves the way for the scale up of such a type of composites.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3