Influence of pre-heating and ceramic thickness on physical properties of luting agents

Author:

Lima Michele O1,Catelan Anderson2,Marchi Giselle M1,Lima Débora ANL1,Martins Luís RM1,Aguiar Flávio HB1

Affiliation:

1. Department of Restorative Dentistry, State University of Campinas, Piracicaba, Brazil

2. Department of Dentistry, University of Western São Paulo, Presidente Prudente, Brazil

Abstract

Purpose: The objective of this in vitro study was to evaluate the influence of ceramic thickness and pre-heating of luting agents on their physical properties. Materials and methods: The materials RelyX Arc, RelyX Ultimate, RelyX Veneer, and Filtek Z350 Flow were handled at different temperatures (23°C or 54°C), inserted into matrix, and photoactivated through ceramic disks (0.75 mm or 1.5 mm). The following tests were performed ( n=8): degree of conversion, Knoop Hardness, cross-link density, water sorption, solubility, and ultimate tensile strength. Data were analyzed using three-way analysis of variance and Tukey’s test (α=0.05). Results: Regarding ceramic thickness, the thinnest ceramic resulted in higher values of Knoop Hardness ( p=0.027). The lowest temperature (23°C) resulted in a higher solubility ( p=0.0257), and water sorption ( p=0.0229) values. There was also statistical difference among the materials: RelyX Arc showed a higher degree of conversion and ultimate tensile strength, followed by RelyX Veneer, RelyX Ultimate, and Filtek Z350 Flow. For Knoop Hardness and cross-link density tests, RelyX Ultimate showed the highest values, followed by RelyX Arc, RelyX Veneer, and Filtek Z350 Flow. For water sorption and solubility, RelyX Veneer showed the highest values, followed by RelyX Arc, RelyX Ultimate, and Filtek Z350 Flow. Conclusion: Pre-heating interfered with water sorption and solubility, whereas ceramic thickness only affected Knoop Hardness; the physical properties of the materials are dependent on their composition.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3