Antibacterial multicomponent electrospun nanofibrous mat through the synergistic effect of biopolymers

Author:

Shahid Md. Abdus1ORCID,Hasan Md. Mehedi2,Alam Md Rubel2ORCID,Mohebullah Md1,Chowdhury Mohammad Asaduzzaman3

Affiliation:

1. Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh

2. Department of Knitwear Manufacturing & Technology (KMT), BGMEA University of Fashion & Technology (BUFT), Dhaka, Bangladesh

3. Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh

Abstract

The endeavor was to adopt a facile bi-layered approach to fabricate a novel PVA-chitosan-collagen-licorice nanofibrous mat (PCCLNM) with maintaining the spinning parameters and conditions to assess the synergistic antibacterial action of two biopolymers and having properties for repairing tissues. Bonding behavior, morphological orientation, antibacterial activity, and moisture management features of the electrospun nanofibrous mat were investigated using various characterization techniques. The FTIR analysis of the manufactured nanofibrous mat revealed characteristic peaks of licorice, chitosan, collagen, and PVA polymer, confirming the presence of all polymers in the sample. Additionally, a scanning electron microscopy (SEM) image attributes the development of nanofibers with an average diameter for top and bottom sides were 219 and 188 nm respectively. Furthermore, moisture management tests (MMT) confirm PCCLNM’s slow absorption and drying capabilities. Apart from that, a disk diffusion method was used to investigate antibacterial activity against the bacteria Staphylococcus aureus (S. aureus), which revealed a strong presence of antibacterial activity with a 20 mm zone of inhibition due to the chemical constituents of licorice and chitosan compound. The developed bio-nanocomposite could have a potential application as wound healing material.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3