Application of the wave and finite element method to predict the acoustic performance of double-leaf cross-laminated timber panels

Author:

Fenemore Chiaki1,Kingan Michael J1ORCID,Mace Brian R1

Affiliation:

1. Acoustics Research Centre, Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand

Abstract

This paper presents a wave and finite element method for predicting the sound transmission loss of double-leaf walls comprising panels of arbitrary complexity separated by a cavity which can contain air or an insulating material. The method is verified against analytical models and validated against a number of different experimental measurements. The method is then used to investigate the effect of various parameters on the sound transmission performance of a double-leaf cross-laminated timber (CLT) wall construction. Parameters investigated include the flow resistivity of the insulating layer separating the wall panels and the effect of panel thickness and orientation. The effect of a neoprene rubber layer in between the CLT panels is also investigated.

Funder

University of Auckland Acoustics Research Centre

Ministry of Business, Innovation and Employment

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3