Can Recall Data Be Trusted? Evaluating Reliability of Interview Data on Traditional Multilingualism in Highland Daghestan

Author:

Daniel Michael1,Koshevoy Alexey23,Schurov Ilya1,Dobrushina Nina1

Affiliation:

1. Linguistic Convergence Laboratory, HSE University, Moscow, Russia

2. Institut Jean Nicod, Département d’études cognitives, ENS, EHESS, CNRS, PSL University, Paris, France

3. Laboratoire de Psychologie Cognitive, Aix-Marseille University, CNRS, Marseille, France

Abstract

In this article, we address the issue of reliability of quantitative data on multilingualism of the past obtained as recall data. More specifically, we investigate whether the interviewees’ assessments of the language repertoires of their late relatives (indirect data) provide results that are quantitatively similar to those obtained from the people of the same age range themselves (direct data). The empirical data we use come from an ongoing field study of traditional multilingualism in Daghestan (Russia). We trained machine learning models to see whether they can detect differences in indirect and direct data. We conclude that our indirect quantitative data on L2 other than Russian are essentially similar to direct data, while there may be a small but systematic underestimation when reporting others’ knowledge of Russian.

Publisher

SAGE Publications

Subject

Anthropology

Reference29 articles.

1. How accurate are recall data? Evidence from coastal India

2. How to study multilingualism of the past: Investigating traditional contact situations in Daghestan

3. Dobrushina N., Staferova D., Belokon A. (eds.). 2017. Atlas of Multilingualism in Dagestan Online. Linguistic Convergence Laboratory, HSE. (Available online at https://multidagestan.com).

4. Atlas of multilingualism in Daghestan: A case study in diachronic sociolinguistics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small-scale multilingualism through the prism of lexical borrowing;International Journal of Bilingualism;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3