Temperature prediction model for ladle furnace based on mathematical mechanisms and the GA–BP algorithm

Author:

Feng Meng-long1ORCID,Lin Lu1,He Sai1,Li Xiang-chen1,Hou Zhong-xiao1,Yao Tong-lu1

Affiliation:

1. Metallurgical Technology Institute, Central Iron and Steel Research Institute, Beijing, People's Republic of China

Abstract

This study addresses the prediction inaccuracy and poor adaptability of conventional temperature prediction models for ladle furnace refining. The historical production data of a steel plant were used to establish a hybrid prediction model based on mathematical mechanisms and a backpropagation neural network optimized using a genetic algorithm. The coefficient of determination ( R 2) of the hybrid model was 0.98, and the hit ratio of temperature prediction within ±5°C was 99.3%. The ladle's thermal status affected the model prediction accuracy. A steel plant with a compact production rhythm and good baking state was less affected by the ladle's thermal status. The model input variables exhibited varying degrees of influence on the end temperature of molten steel in two steel plants with the starting temperature of the molten steel entering the station having the greatest influence. For accurate temperature control and prediction in actual production, high-influence variables must be given focus to ensure their stable control and process interference must be mitigated.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ladle furnace temperature monitoring and control by interval type-2 radial basis function neural network;The International Journal of Advanced Manufacturing Technology;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3