A Method for the Comparison of Item Selection Rules in Computerized Adaptive Testing

Author:

Barrada Juan Ramón1,Olea Julio2,Ponsoda Vicente2,Abad Francisco José2

Affiliation:

1. Universidad Autónoma de Barcelona, Spain,

2. Universidad Autónoma de Madrid, Spain

Abstract

In a typical study comparing the relative efficiency of two item selection rules in computerized adaptive testing, the common result is that they simultaneously differ in accuracy and security, making it difficult to reach a conclusion on which is the more appropriate rule. This study proposes a strategy to conduct a global comparison of two or more selection rules. A plot showing the performance of each selection rule for several maximum exposure rates is obtained and the whole plot is compared with other rule plots. The strategy was applied in a simulation study with fixed-length CATs for the comparison of six item selection rules: the point Fisher information, Fisher information weighted by likelihood, Kullback-Leibler weighted by likelihood, maximum information stratification with blocking, progressive and proportional methods. Our results show that there is no optimal rule for any overlap value or root mean square error (RMSE). The fact that a rule, for a given level of overlap, has lower RMSE than another does not imply that this pattern holds for another overlap rate. A fair comparison of the rules requires extensive manipulation of the maximum exposure rates. The best methods were the Kullback-Leibler weighted by likelihood, the proportional method, and the maximum information stratification method with blocking.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3