An Iterative Parametric Bootstrap Approach to Evaluating Rater Fit

Author:

Guo Wenjing1ORCID,Wind Stefanie A.1ORCID

Affiliation:

1. The University of Alabama, Tuscaloosa, USA

Abstract

When analysts evaluate performance assessments, they often use modern measurement theory models to identify raters who frequently give ratings that are different from what would be expected, given the quality of the performance. To detect problematic scoring patterns, two rater fit statistics, the infit and outfit mean square error ( MSE) statistics are routinely used. However, the interpretation of these statistics is not straightforward. A common practice is that researchers employ established rule-of-thumb critical values to interpret infit and outfit MSE statistics. Unfortunately, prior studies have shown that these rule-of-thumb values may not be appropriate in many empirical situations. Parametric bootstrapped critical values for infit and outfit MSE statistics provide a promising alternative approach to identifying item and person misfit in item response theory (IRT) analyses. However, researchers have not examined the performance of this approach for detecting rater misfit. In this study, we illustrate a bootstrap procedure that researchers can use to identify critical values for infit and outfit MSE statistics, and we used a simulation study to assess the false-positive and true-positive rates of these two statistics. We observed that the false-positive rates were highly inflated, and the true-positive rates were relatively low. Thus, we proposed an iterative parametric bootstrap procedure to overcome these limitations. The results indicated that using the iterative procedure to establish 95% critical values of infit and outfit MSE statistics had better-controlled false-positive rates and higher true-positive rates compared to using traditional parametric bootstrap procedure and rule-of-thumb critical values.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3