An Extension of the DINA Model Using Covariates

Author:

Park Yoon Soo1,Lee Young-Sun2

Affiliation:

1. University of Illinois at Chicago, Chicago, IL, USA

2. Columbia University, New York, NY, USA

Abstract

When students solve problems, their proficiency in a particular subject may influence how well they perform in a similar, but different area of study. For example, studies have shown that science ability may have an effect on the mastery of mathematics skills, which in turn may affect how examinees respond to mathematics items. From this view, it becomes natural to examine the relationship of performance on a particular area of study to the mastery of attributes on a related subject. To examine such an influence, this study proposes a covariate extension to the deterministic input noisy “and” gate (DINA) model by applying a latent class regression framework. The DINA model has been selected for the study as it is known for its parsimony, easy interpretation, and potential extension of the covariate framework to more complex cognitive diagnostic models. In this approach, covariates can be specified to affect items or attributes. Real-world data analysis using the fourth-grade Trends in International Mathematics and Science Study (TIMSS) data showed significant relationships between science ability and attributes in mathematics. Simulation study results showed stable recovery of parameters and latent classes for varying sample sizes. These findings suggest further applications of covariates in a cognitive diagnostic modeling framework that can aid the understanding of how various factors influence mastery of fine-grained attributes.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3