Affiliation:
1. Iowa State University,
2. University of South Carolina
Abstract
DIMTEST is a nonparametric hypothesis-testing procedure designed to test the assumptions of a unidimensional and locally independent item response theory model. Several previous Monte Carlo studies have found that using linear factor analysis to select the assessment subtest for DIMTEST results in a moderate to severe loss of power when the exam lacks simple structure, the ability and difficulty parameter distributions differ greatly, or the underlying model is noncompensatory. A new method of selecting the assessment subtest for DIMTEST, based on the conditional covariance dimensionality programs DETECT and HCA/ CCPROX, is presented. Simulation studies show that using DIMTEST with this new selection method has either similar or significantly higher power to detect multidimensionality than using linear factor analysis for subtest selection, while maintaining Type I error rates around the nominal level.
Subject
Psychology (miscellaneous),Social Sciences (miscellaneous)
Reference24 articles.
1. Graphical Representation of Multidimensional Item Response Theory Analyses
2. Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395-479). Menlo Park, CA: Addison-Wesley.
3. Study of the measurement bias of two standardized psychological tests.
4. On the need for negative local item dependence
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献